Que hay despues del universo

Qué hay fuera del universo reddit

Por lo que sabemos, el universo no tiene límites. El espacio se extiende infinitamente en todas las direcciones. Además, las galaxias llenan todo el espacio en todo el universo infinito. Se llega a esta conclusión combinando lógicamente dos observaciones.

En primer lugar, la parte del universo que podemos ver es uniforme y plana a escala cósmica. La uniformidad del universo significa que los grupos de galaxias están repartidos más o menos uniformemente en la escala cósmica. La planitud del universo significa que la geometría del espacio-tiempo no está curvada ni deformada a escala cósmica. Esto significa que el universo no se envuelve y conecta consigo mismo como la superficie de una esfera, lo que llevaría a un universo finito. La planitud del universo es en realidad un resultado de la uniformidad del universo, ya que las colecciones concentradas de masa hacen que el espacio-tiempo sea curvo. Las lunas, los planetas, las estrellas y las galaxias son ejemplos de concentraciones de masa y, por tanto, deforman el espacio-tiempo en su entorno. Sin embargo, estos objetos son tan pequeños comparados con la escala cósmica, que las deformaciones del espaciotiempo que provocan son insignificantes a escala cósmica. Si se hace un promedio de todas las lunas, planetas, estrellas y galaxias del universo para obtener una expresión a gran escala de la distribución de la masa del universo, se encuentra que es constante.

Lo que viene después del multiverso

A principios de la década de 1990, una cosa era bastante segura sobre la expansión del universo. Podía tener suficiente densidad de energía para detener su expansión y volver a colapsar, podía tener tan poca densidad de energía que nunca dejaría de expandirse, pero la gravedad estaba segura de que frenaría la expansión a medida que pasara el tiempo. Es cierto que no se ha observado esa ralentización, pero, en teoría, el universo tenía que ralentizarse. El universo está lleno de materia y la fuerza de atracción de la gravedad atrae a toda la materia. Entonces llegó 1998 y las observaciones del telescopio espacial Hubble (HST) de supernovas muy lejanas que mostraron que, hace mucho tiempo, el universo se expandía realmente más despacio que hoy. Así que la expansión del universo no se ha ralentizado debido a la gravedad, como todo el mundo pensaba, sino que se ha acelerado. Nadie esperaba esto, nadie sabía cómo explicarlo. Pero algo lo estaba causando.

Al final, los teóricos propusieron tres tipos de explicaciones. Tal vez era el resultado de una versión de la teoría de la gravedad de Einstein, descartada hace tiempo, que contenía lo que se llamó una “constante cosmológica”. Tal vez había algún tipo extraño de energía-fluido que llenaba el espacio. Tal vez haya algo que no funciona en la teoría de la gravedad de Einstein y una nueva teoría podría incluir algún tipo de campo que crea esta aceleración cósmica. Los teóricos aún no saben cuál es la explicación correcta, pero han dado un nombre a la solución. Se llama energía oscura.

¿Dónde termina el universo y de qué está rodeado?

En 1929, el astrónomo estadounidense Edwin Hubble descubrió que las distancias a las galaxias lejanas eran proporcionales a su desplazamiento al rojo. El desplazamiento al rojo se produce cuando una fuente de luz se aleja de su observador: la longitud de onda aparente de la luz se estira por efecto Doppler hacia la parte roja del espectro. La observación de Hubble implicaba que las galaxias lejanas se alejaban de nosotros, ya que las más lejanas tenían las velocidades aparentes más rápidas. Si las galaxias se alejan de nosotros, razonó Hubble, en algún momento del pasado debieron estar agrupadas.

En los primeros momentos después del Big Bang, el universo era extremadamente caliente y denso. A medida que el universo se fue enfriando, se dieron las condiciones idóneas para dar lugar a los bloques de construcción de la materia: los quarks y los electrones de los que estamos hechos. Unas millonésimas de segundo después, los quarks se agregaron para producir protones y neutrones. En pocos minutos, estos protones y neutrones se combinaron en núcleos. A medida que el universo seguía expandiéndose y enfriándose, las cosas empezaron a suceder más lentamente. Los electrones tardaron 380.000 años en quedar atrapados en órbitas alrededor de los núcleos, formando los primeros átomos. Éstos eran principalmente helio e hidrógeno, que siguen siendo, con mucho, los elementos más abundantes del universo. Las observaciones actuales sugieren que las primeras estrellas se formaron a partir de nubes de gas unos 150-200 millones de años después del Big Bang. Desde entonces, los átomos más pesados, como el carbono, el oxígeno y el hierro, se producen continuamente en el corazón de las estrellas y se catapultan por todo el universo en espectaculares explosiones estelares llamadas supernovas.

Universo observable

Durante ese tiempo, el gas de hidrógeno que constituye la mayor parte del material en el espacio entre las galaxias hoy en día se cargó eléctricamente. Esa época de reionización, como se denomina, fue “uno de los últimos grandes cambios en el universo”, dice Brant Robertson, que dirige el Grupo de Investigación de Astrofísica Computacional de la Universidad de California en Santa Cruz. Fue el amanecer del universo tal y como lo conocemos”.

Pero los científicos no han podido observar con detalle lo que ocurrió durante la época de reionización, hasta ahora. El recién activado telescopio espacial James Webb de la NASA ofrece ojos que pueden atravesar el velo de esta época de formación. Astrofísicos como Robertson ya están estudiando los datos del JWST en busca de respuestas a preguntas fundamentales sobre ese amanecer cósmico eléctrico y lo que puede decirnos sobre la dinámica que da forma al universo actual.

La época de la reionización no fue la primera vez que el universo se llenó de electricidad. Justo después del Big Bang, el cosmos era oscuro y caliente; no había estrellas, galaxias ni planetas. En su lugar, los electrones y protones vagaban libremente, ya que había demasiado vapor para que se emparejaran.

You May Also Like

About the Author: Olivo Magno